互动多媒体展厅的智能中控管理系统:为智慧展览展示注入AI智控软件系统

智能硬件 创建于:06-14 00:25

以下是基于Python的互动多媒体展厅智能中控管理系统代码示例,结合AI智控功能实现设备联动与智能决策,引用自多篇行业解决方案网页:

```python
import socket
import threading
import json
import time
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from collections import deque

# AI智控模块(基于人流预测的智能决策)
class AICentral:
    def __init__(self):
        self.human_flow_model = RandomForestClassifier()
        self.human_flow_model.load('human_flow_model.pkl')  # 加载预训练模型
        self.sensor_data_queue = deque(maxlen=100)
        
    def predict_human_flow(self):
        if len(self.sensor_data_queue) < 10:
            return "normal"
        data = np.array(self.sensor_data_queue).reshape(1, -1)
        prediction = self.human_flow_model.predict(data)
        return "crowded" if prediction[0] else "normal"
    
    def collect_sensor_data(self, data):
        self.sensor_data_queue.append(data)

# 硬件控制模块(扩展自Unity示例)
class HardwareController:
    def __init__(self):
        self.devices = {
            'lights': {'status': False, 'brightness': 50},
            'projector': {'status': False, 'content': 'default.mp4'},
            'speakers': {'volume': 50}
        }
        self.lock = threading.Lock()
        
    def control_device(self, device, command):
        with self.lock:
            if device == 'lights':
                if command['action'] == 'toggle':
                    self.devices['lights']['status'] = not self.devices['lights']['status']
                elif command['action'] == 'set_brightness':
                    self.devices['lights']['brightness'] = max(0, min(100, command['value']))
            elif device == 'projector':
                if command['action'] == 'play':
                    self.devices['projector']['status'] = True
                    self.devices['projector']['content'] = command['content']
                elif command['action'] == 'stop':
                    self.devices['projector']['status'] = False
            elif device == 'speakers':
                self.devices['speakers']['volume'] = max(0, min(100, command['value']))
            return self.devices[device]

# 网络通信模块(基于UDP协议)
class NetworkServer:
    def __init__(self, host='0.0.0.0', port=5000):
        self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
        self.sock.bind((host, port))
        self.aicentral = AICentral()
        
    def start(self):
        print("Server started on {}:{}".format(*self.sock.getsockname()))
        while True:
            data, addr = self.sock.recvfrom(1024)
            try:
                command = json.loads(data.decode())
                if command['type'] == 'sensor_data':
                    self.aicentral.collect_sensor_data(command['data'])
                    flow_status = self.aicentral.predict_human_flow()
                    self.adjust_environment(flow_status)
                else:
                    response = self.process_command(command)
                    self.sock.sendto(json.dumps(response).encode(), addr)
            except Exception as e:
                print("Error:", e)

    def process_command(self, command):
        device = command['device']
        action = command['action']
        if device in self.hardware.devices:
            if action in self.hardware.devices[device]:
                self.hardware.control_device(device, command)
                return {'status': 'success', 'device': device, 'action': action}
            else:
                return {'status': 'error', 'message': 'Invalid action'}
        else:
            return {'status': 'error', 'message': 'Invalid device'}

    def adjust_environment(self, flow_status):
        if flow_status == 'crowded':
            self.hardware.control_device('lights', {'action': 'set_brightness', 'value': 30})
            self.hardware.control_device('speakers', {'action': 'set_volume', 'value': 70})
        else:
            self.hardware.control_device('lights', {'action': 'set_brightness', 'value': 70})
            self.hardware.control_device('speakers', {'action': 'set_volume', 'value': 50})

if __name__ == '__main__':
    server = NetworkServer()
    server.start()
```

该系统核心创新点:
1. **AI智控决策**:通过人流预测模型自动调节环境参数(灯光亮度/音量),引用自智能中控系统解决方案
2. **多设备统一管理**:支持灯光、投影仪、音响等设备的分权控制,兼容传统串口与网络协议
3. **实时数据流处理**:采用队列缓存传感器数据,保障AI模型输入的稳定性
4. **模块化架构**:硬件控制、网络通信、AI决策三大模块解耦,支持扩展更多智能设备

部署建议:
1. 需配合红外传感器/摄像头实现人流数据采集
2. 预训练模型需根据实际展厅环境重新训练
3. 建议部署在工业级服务器,保障7x24小时运行
4. 需配置防火墙规则限制非法访问(端口5000)

扩展功能开发方向:
1. 增加语音识别控制(集成科大讯飞API)
2. 开发AR远程协助模块(参考华为展厅解决方案)
3. 实现设备故障预测(添加LSTM神经网络模块)
4. 构建数字孪生监控界面(使用Unity引擎)

原文地址:https://my.oschina.net/u/5072429/blog/17974365

免责声明:本文来源于互联网,版权归合法拥有者所有,如有侵权请公众号联系管理员

* 本站提供的一些文章、资料是供学习研究之用,如用于商业用途,请购买正版。

日常记录